На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:
общая лексика
напор насоса
гидрология
суммарная высота напора
строительное дело
полный напор, теоретическая высота подъёма (насоса)
полная удельная энергия потока
нефтегазовая промышленность
полный напор
высота подачи (воды)
медицина
генерализованная алопеция
гнёздная злокачественная алопеция
тотальная алопеция
универсальная алопеция
полная плешивость
тотальная плешивость
медицина
окружность головы
[hed'redʒistə]
музыка
головной регистр
['hedtəun]
синоним
['hedvɔis]
музыка
головной голос или регистр
физика
высота пьезометрическая
скоростной напор
строительное дело
статический напор
нефтегазовая промышленность
величина напора
высота нагнетания (насоса)
гидростатический напор
гидростатическое давление
Bernoulli's principle is a key concept in fluid dynamics that relates pressure, speed and height. Bernoulli's principle states that an increase in the speed of a fluid occurs simultaneously with a decrease in static pressure or a decrease in the fluid's potential energy.: Ch.3 : 156–164, § 3.5 The principle is named after the Swiss mathematician and physicist Daniel Bernoulli, who published it in his book Hydrodynamica in 1738. Although Bernoulli deduced that pressure decreases when the flow speed increases, it was Leonhard Euler in 1752 who derived Bernoulli's equation in its usual form. The principle is only applicable for isentropic flows: when the effects of irreversible processes (like turbulence) and non-adiabatic processes (e.g. thermal radiation) are small and can be neglected.
Bernoulli's principle can be applied to various types of fluid flow, resulting in various forms of Bernoulli's equation. The simple form of Bernoulli's equation is valid for incompressible flows (e.g. most liquid flows and gases moving at low Mach number). More advanced forms may be applied to compressible flows at higher Mach numbers.
Bernoulli's principle can be derived from the principle of conservation of energy. This states that, in a steady flow, the sum of all forms of energy in a fluid is the same at all points that are free of viscous forces. This requires that the sum of kinetic energy, potential energy and internal energy remains constant.: § 3.5 Thus an increase in the speed of the fluid—implying an increase in its kinetic energy (dynamic pressure)—occurs with a simultaneous decrease in (the sum of) its potential energy (including the static pressure) and internal energy. If the fluid is flowing out of a reservoir, the sum of all forms of energy is the same because in a reservoir the energy per unit volume (the sum of pressure and gravitational potential ρ g h) is the same everywhere.: Example 3.5 and p.116
Bernoulli's principle can also be derived directly from Isaac Newton's second Law of Motion. If a small volume of fluid is flowing horizontally from a region of high pressure to a region of low pressure, then there is more pressure behind than in front. This gives a net force on the volume, accelerating it along the streamline.
Fluid particles are subject only to pressure and their own weight. If a fluid is flowing horizontally and along a section of a streamline, where the speed increases it can only be because the fluid on that section has moved from a region of higher pressure to a region of lower pressure; and if its speed decreases, it can only be because it has moved from a region of lower pressure to a region of higher pressure. Consequently, within a fluid flowing horizontally, the highest speed occurs where the pressure is lowest, and the lowest speed occurs where the pressure is highest.